AD-A253 97
HllllﬂﬂllﬂﬂlWWHﬂl

Appearance-Based Vision
and the Automatic Generation of
.® Object Recognition Programs

s Keith D. Gremban and Katsushi Ikeuchi
1 July 1992 ‘ '
CMU-CS-92-159 D T l C"

ELECTE §%
AUG121992

School of Computer Science A
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213-3890

This report will appear in the collection 3D Object Recognition Systems,
edited by Anil K. Jain and Patrick J. Flynn, to be published by Elsevier.

e e

Th\s dwumex i has been uppvo ved
foz public release and cida' its
distribution js unlimite

o

92—-20968

\\ll\\l\I\\l\\l\l\\l\\lll\ﬂl\ll|“|\ﬂ\|\||\

This research was sponsored by the Avionics Laboratory, Wright Research and Development Center, Aeronautical Systems Division
(AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597. The
views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official pol-
icies, either expressed or implied, of the Defense Advanced Research Projects Agency or of the U.S. Government.

92 8 §° 005

e

Keywords: computer vision, vision and scene understanding, automatic programming

Abstract

The generation of recognition programs by hand is a time-consuming, labor-intensive task that
typically results in a special purpose program for the recognition of a single object or a small set
of objects. Recent work in automatic code generation has demonstrated the feasibility of auto-
matically generating object recognition programs from CAD-based descriptions of objects. Many
of the programs which perform automatic code generation employ a common paradigm of utiliz-
ing explicit object and sensor models to predict object appearances; we refer to the paradigm as
appearance-based vision, and refer to the programs as vision algorithm compilers (VACs). A
CAD-like object model augmented with sensor-specific information like color and reflectance, in
conjunction with a sensor model, provides all the information needed to predict the appearance
of an object under any specified set of viewing conditions. Appearances, characterized in terms
of feature values, can be predicted in two ways: analytically, or synthetically. In relatively simple
domains, feature values can be analytically determined from model irformation. However, in
complex domains, the analytic prediction method is impractical. An alternative method for
appearance prediction is 10 use an appearance simulator to generate synthetic images of objects
which can then be processed to extract featre values. In this paper, we discuss the paradigm of
appearance-based vision and present in detail two specific VACs: one that computes feature val-
ues analytically, and a second that utilizes an appearance simulator to synthesize sample images.

Accesion For

 ccesion Fe \

. DlSt SSA,:.’,E'H

M|

NTIS CRA&)
DTIC TAB m
Usannou;,ced L
Justification
BY
ODistibutionf]
Availabiiiiy éoocs
Avail 2vcior]

Statement A per telecon Chahira Hopper

WL/AAAT
WPAFB,O0H 45433

NWW 8/10/92

DTIC QUALITY INSFk. ey, |

peg=2

1 Introduction

The generation of object recognition programs by hand is a time-consuming, labor-intensive process that typically
results in a special purpose program for the recognition of a single object or a small set of objects. The reason for this
lies in the design methodology: on the basis of a representative set of sample images, the designer selects a set of
image features and specifies the procedure to be used in matching image features to object features. Feature selection
mmmmdmymﬁmmwumphmgammwwmwmaom
mmmofbmhfmmmmdﬂwmmgume&mmummg”dmmm
Mvemmmmmmamymmwmmmmu
often an efficient, robust solution to the problem, the overall cost is so high as to be prohibitive for many applications.

Recently, driven in part by an effort to make computer vision systems more economically feasible, research has been
conducted towards the goal of antomatically generating recognition code from a CAD-based description of an object.
Most current industrial parts are designed and manufactured using computer-aided tools, so CAD descriptions exist
for most parts; automatic generation of recognition code from the same model information used for design and man-
ufacture would be an efficient, cost-effective approach. A number of programs for automatic generation of object rec-
ognition code have been writien, and many of these programs employ a common paradigm in which explicit object
and sensor models are used to predict object appearances. We refer to the paradigm as appearance-based vision, and
programs which generate object recognition programs are called vision algorithm compilers, o VACs.

Appearance-based vision represents an extension to the familiar paradigm of model-based vision. Model-based
vision defines an execution-time methodology of matching observed image features to model features, but does not
address the issue of defining a meihodology for selecting either features or matching procedures. Appearance-based
vision systems empioy model-based matching during the execution-time recognition phase, but also employ a charac-
teristic methodology during the off-line compilation phase, during which features are selected and processing strate-
gies determined.

In principle, a CAD-like object model, augmented with sensor-specific information like surface color, roughness, and
reflectance, can be used in conjunction with a sensor model to predict the appearance of the object under any speci-
fied set of viewing conditions. For example, knowing the color and reflectance of a polygonal patch permits a com-
plete determination of its variation in appearance with respect 10 a video camera and a fixed light source. VACs can
predict object sppearances in two different ways: analytically, or synthetically.

In relatively simple domains, feature values can be analytically determined from model information. For example, the
set of visible edges of a polyhedron with lambertian surfaces is a straightforward computation. Similarly, the collec-
tion of visible surfaces with respect (o a range sensor can be easily computed. As objects and their properties grow in
compizxity, however, effects such as seif-shadowing and inter-reflection become more important, but are difficult w0
incorporate into an analysis. Analytic prediction of appearances is therefore impractical for some domains.

An alternative to analytic prediction of appearances is the use of an appearance simulator. An appearance simulator
generates synthetic images of objects under specific viewing conditions, with respect to a given seasor. An appear-
ance simulator can be used to generate a representative collection of sample images, which can then be processed and
snalyzed to0 extract the feature values that characterize object appearances. Thus, a VAC utilizing an appearance sim-
ulator is a computational implementation of the traditional hand-generation approach to building object recognition
systems.

In this paper, we discuss the paradigm of appearance-based vision. In the next section, we review the state-of-the-art
in appearance-based vision and the sutomatic generation of object recognition programs. In the course of the review,
the defining characteristics of appearance-based vision systems will be noted. Following the review, we will present
in detail two VACs which typify sppearance-based systems. In section 3, we present a VAC that employs analytic
prediction of appearances, and the advantages and limitations of this approach are discussed. Then, in section 4, we
preseat a VAC that utilizes an appearance simulator. A brief summary concludes the paper.

page 3
2 The Paradigm of Appearance-Based Vision

The history of computer vision research has largely been a study in making vision systems work. Little attention has
been paid to the study of how to design and build application systems. For example, the dominant paradigm in com-
puter vision is that of model-based vision. Briefly, the model-based paradigm can be characterized as kypothesize-
predict-verify. given a coliection of image features, Aypothesize a match of an image feature to a mode! feature; use
the hypothesized match w predict the image locations of other model features; verify the predictions and update the
hypothesis. The paradigm does not specify how to select the features to use, or how to perform the matching. The par-
adigm defines an approach to execution-time processing, rather than an approach to system building.

Typically, a model-based vision system is built by hand through a time-consuming, labor-intensive, experimental pro-
cess. The designer specifies a task scenario and obtains sample images. The images are repeatedly processed using a
variety of operators until the designer has selected a set of fieatures that is adequate for the task. The designer then
determines appropriate values to characterize the features, implements a matching procedure, and experimentally
“tunes” the procedure to perform optimally. The resulting programs are often extremely efficient and competent for
the intended application, but are difficult to extend or modify. Moreover, every model-based system takes about the
same amount of effort to develop.

Because every computer vision system is essentially a custom solution to0 a specific problem, a typical computer
vision sysiem is expensive 0 develop and install, and is capable of recognizing only a singie part or a small number
of parts under very special conditions. Modifications to existing systems are difficult to make, and the cost to develop
a new system is as high as that of the first system. Clearly this is an unacceptable situstion. For computer vision sys-
tems to be practical, they must be cost-effective. This means, among other things, that a computer vision system must
be economical to develop, install, and modify.

Appearance-based vision addresses the problem of building cost-effective computer vision systems; it specifies a
methodology for the automatic gencration of object recognition programs. Appearance-based vision is an extension
of the model-based paradigm that formalizes and automates the design process. Appearance-based vision can be
characterized as an automated process of analyzing the appearances of objects under specified observation condi-
tions, followed by the automatic generation of model-based object recognition programs based on the preceding anal-
ysis. An appearance-based system is called a vision algorithm compiler, or VAC,

The appearance of an object is a function of both the properties of the object, and the properties of the sensor system
as well. Object models must be more sophisticated than conventional CAD models, which only represent object
geometry. Models for appearance-besed vision must include any information that contributes to the appearance of an
object with respect to a sensor. For exampie, 3D geometry is necessary to predict apparent shape, but must be aug-
mented with information about surface roughness, reflectance, transmittance, and color. Since the appearance of an
object varies with respect to the sensor, sensor models must also be specified. A sensor model must include informa-

tion about the relative geometry of the illuminant and detectors, as well as information about the features detectable
by the sensor.

One characteristic of appearance-based vision is that both objects and sensors are explicitly modeled, and therefore
exchangeable. Hence, a given VAC can generate object recognition code for many different objects using the same
sensor model, or the set of objects can be fixed and the sensor models varied. Appearance-based systems embody an
abstract principle of appearance prediction based on the use of accurate models.

The task of object recognition is composed of two subtasks: object idensification, in which objects in the scene are
identified, and object localization, in which the exact pose (position and orientation) of an identified object is com-
puted. A given object recognition task may consist of either or both subtasks, and VACs have been constrocted 1o
solve all the different combinations of identification and localization.

A VAC incorporates a two stage approach to object recognition. The first stage is executed off-line and consists of
performing analysis of predicied object appearances and the generation of object recognition code. The second stage

page 4

is executed on-line, and consists of applying the previousiy generated code to input images. The first stage is executed
only once for a given object recognition task, and can be relatively expensive. The second stage is executed many
times, and must be both fast and cost-effective. The high cost of the first stage is amortized over a large number of
executions of the second stage.

During the first, off-line stage of processing, the appearances of the object are predicted over the expected range of
viewpoints. The predicted appearances are analyzed to0 determine the set of features that are useful for recognition.
Frequently, identification and localization are performed most efficiently using different feature sets. Once the feature
set is determined, representative values for the features are determined and compiled into a recognition strategy.

The second, on-line stage of an appearance-based system is nothing more than the run-time execution of the gener-
ated strategy. Since there are many different computational strategies, the on-line stage varies considerably between
systems. The important principle is that extensive off-line analysis can be used to make the on-line stage as efficient,
robust, and cost-effective as possible.

In the next subsection, we present an historical overview of research on sppearance-based vision. Then, building on
the historical perspective, we enumerate and elaborate on the commonalitics between the systems; it is this set of
common characteristics that define the paradigm of appearance-based vision.

2.1 Historical Perspective

Goad (9] presented an early version of a VAC. He noted that the computstional activity of an application vision sys-
tem could be split up into two stages: an analysis stage, in which useful information about 1e task can be compiled;
and an execution stage in which the compiled information is utilized to perform object recognition. Moreover, the
compilation stage is performed off-line only once, at considerable computational expense, while the execution stage
is executed on-line many times, and should be optimized to be as rapid as possible. The computational expense of the
off-line stage is then offset by the savings realized by the repeated execution of the optimized on-line stage.

In Goad’s system, an object is described by a list of edges and a set of visibility conditions for each edge. Visibility is
determined by checking visibility at a representative number of viewpoints obtained by tessellating the viewing
sphere. Object recognition is performed by a process of iteratively matching object and image edges until either a sat-
isfactory match is found, or the algorithm fails. The sequence of matchings is compiled during the off-line analysis
phase. Goad’s system was not completely automatic, however. Goad selected edges as the features to be used far rec-
ognition, and the order of edge matching was specified by hand.

The 3DPO system of Bolles and Horaud [4] was built with the intended goal of using off-line analysis to produce the
fastest, most efficient on-line object recognition program possible. 3DPO utilized the local-feature-focus method, in
which a prominent focus feature is initially identified, and then secondary features predicted from the focus feature
are used 1o fine-tune the localization result. The sysiem was not fully automatic, as the focus features and secondary
featres were chosen by hand.

Ikeuchi and Kanade [14), [16] first pointed out the importance of modeling sensors as well as objects in order to pre-
dict appearances, and noted that the features that are useful for recognition depend on the sensor being used. Their
system, which will be elaborated on in section 3 predicts object appearances at a representative set of viewpoints
obtained by tessellating the viewing sphere. The appearances are grouped into equivalence classes with respect to the
visible features; the equivalence classes are called aspects. A recognition strategy is generated from the aspects and
their predicied feature values, and is represented as an interpretation tree. Each interpretation tree specifies the
sequence of operations required to precisely localize an object. The sequence of operations is broken up into two
parts: the first part classifies an input image into an instance of one of the aspects, while the second part determines
the precise pose (position and orientation) of the object within the specified aspect.

Hansen and Henderson [10] demonstrated a system that analyzed 3D geometric properties of objects and generated a
recognition strategy. The system was developed to make use of a range sensor for recognition. The system examines

page S

object appearances at a representative set of viewpoints obtsined by tessellating the viewing sphere. Geometric fea-
tures at each viewpoint are examined, and the properties of robustness, completeness, consistency, cost, and unique-
ness are evaluated in order to0 select a complete and consistent set of features. For each model, a strategy tree is
constructed, which describes the search strategy used to recognize and localize objects in a scene. Each strategy tree
first uses the strongest set of features 10 identify the object and aspect, uses secondary features to corroborate the
aspect identification, and then o find the exact pose.

The system of Arman and Aggarwal (1] was designed to be capable of selecting the proper sensor for a given task.
Starting with s CAD model of an object, the system builds up a tree in which the root node represents the object, and
the leaves represent features (where features are dependent upon the sensor selected), and a path from the root to a
leaf passes through nodes representing increasing specificity. For example, starting at the root, a path could lead to a
node representing the sensor property (shape, color, reflectance....), then to a feature class node (surface, bound-
ary,...), and so on down to a leaf node that represents a particular feature of the object. Each arc in the tree is weighted
by a “reward potential” that represents the likely gain from traversing that link. At run time, the system traverses the
tree from the root to the leaves, choosing the branch with the highest weight at each level, and backtracking when
necessary.

The PREMIO system of Camps, et al [5] predicts object appearances under various conditions of lighting, viewpoint,
sensor, and image processing operators. Unlike other systems, PREMIO also evaluates the utility of each feature by
analyzing the detectability, reliability, and accuracy. The predictions are then used by a probabilistic matching algo-
rithm that performs the on-line process of identification and localization.

The BONSAI system of Flynn and Jain (7] identifies and localizes 3D objects in range images by comparing rela-
tional graphs extracted from CAD models to relational graphs constructed from range image segmentation. The sys-
tem constructs the relational graphs off-line using two techniques: first, view-independent features are calculated
directly from a CAD model; second, synthetic images are constructed for a representative set of viewpoints obtained
by tessellating the viewing sphere, and the predicted areas of patches are determined and stored as an attribute of the
appropriate relational graph node. During the on-line recognition phase, an interpretation tree is constructed which
represents all possible matchings of the graph constructed from a range image, and the stored model graph. Recogni-
tion is performed by heuristic search of the interpretation tree.

Sato, et al [20) demonstrated a system for recognition of specular objects. This system will be discussed more com-
pletely in section 4. During an off-line phase, the sysiem generates synthetic images from a representative set of
viewpoints. Specularities are extracted from each image, and the images are grouped into aspects according to shared
specularities, and each specularity is evaluated in terms of its detectability and reliability. A deformable template is
also prepared for each aspect. At execution time, an input image is classified into a few possible aspects using a con-
tinvous classification procedure based on Dempster-Shafer theory. Final verification and localization is performed
using deformable template maiching.

2.2 The Common Threads

After reviewing the different appearance-based systems that have been constructed, it is useful to go back and point
out the common processing steps.

2.2.1 Two Phases of Processing

Each of the systems discussed employ two distinct phases of processing. The first phase, variously called off-line,
compilation, oc analysis, consists of analyzing object appearances and constructing recognition strategies. The sec-
ond phase, called on-line, run-time, or execution, consists of applying the strategies generated in the first phase 10 an
actual recognition task. In general, computational efficiency is not & concern in the first phase, since it does not
directly affect the actual time or effort required to perform object recognition, and the cost is only incurred once. In
contrast, the second phase is expected t0 execute many times as part of an application, and consequently must be effi-

page 6

cient. In effect. the time spent during strategy generation can be amortized over the number of executions of the
resultant strategy.

2.2.2 Explicit Object and Sensor Models

Any object recognition system must match the appearance of an object with respect to some sensor, to a model of the
object. Conscquently, to automatically generate a program for object recognition, it is necessary to predict and ana-
lyze object appearances. Objects appear differently to different sensors, so in order 1o predict object appearances, sen-
sors must be modeled as well. An appearance-based system therefore includes both object and sensor models.

The early appearance-based systems only made use of explicit object models and utilized implicit sensor models,
ﬂﬁnughmenedfmmﬁmmdmo&hmwmﬁmmdwemmmm
All recent systems have emphasized the fact that appearance depends upon the sensor and include explicit models of

both objects and sensors. Models may be exchanged so that the same VAC can generate object recognition programs
for a variety of objects and sensors.

2.2.3 Appearance Prediction and Analysis

In general, there are two approaches to predicting object appearances: analytic and synthetic. The analytic approach
uses the information stored in object and sensor models to analytically predict the appearance of an object from vari-
ous viewpoints. Alternatively, it is possible to generate images of objects under specific sensor conditions and analyze
the synthetic images. Both techniques have advantages and disadvantages that are discussed more completely in the

next two sections.

The appearance of an object varies with respect to the sensor used. The appearance of an object with respect t0 a sen-
sor is characterized by means of the features that can be extracted from the sensor image. Hence, each sensor model
includes a feature set, and a collection of image processing operators that are used to extract the features.

The appearance of an object also varies with respect to the relative geometry between sensor and object, which can be
referred 1o as the viewpoint. Potentially, there are six degrees of freedom in viewpoint, each of which spans an infinite
number of parameter values. Clearly, exhaustive computation of all possible appearances is impossible. To make the
set of possible appearances manageable, similar appearances are grouped into sets called aspects. Formally, an aspect
is a class of topologically equivalent views of an object [17). However, since different sensors detect different fea-
tures, the formal definition of an aspect is usually relaxed to be a class of appearances that are equivalent with respect
to a feature set

A substantial amount of work has been performed on deriving methods for analytically determining the collection of
aspects of an object For example, Plantinga and Dyer [19] compute the exact set of aspects for polyhedra under
euwmommcmjwumamwmmgmedﬁmm&mumpdomuqumm
views. Kriegman and Ponce {18] compute the exact set of aspects for solids of revolution under orthographic projec

tion, amnmmghdeﬁmmdmswpobmﬂymmmmmmmmm
exact aspects for quadric-surfaced solids under perspective projection, where aspects are views with isomorphic line-
junction graphs.

An alternative to the exact analytic computation of aspects is the exhaustive approach, in which viewpoints are sam-
pled uniformly throughout.the space of possible viewpoints, and then similar viewpoints are grouped together. An
approach of this sort was used by Ikeuchi and Kanade {16], Hansen and Henderson [10), Flynn and Jain (7], and Sato,
et al (20]. In each of these systems, the space of possible viewpoints is uniformly tessellased, and the object appear-
ance is predicted from each viewpoint corresponding tr the center of a tessel. The fidelity of the sampling can be
increased by subdividing each tessel. This approach is more general than the analytic approach, since the same proce-
dure can be used independently of the sensor or feature set.

page 7
2.2.4 Generation of a Recognition Strategy

The result of the off-line, compilation phase of an appearance-based system is a strategy for object recognition. The
stracgy is ofien represented in the form of a tree that represents the sequence of operations 1o perform at each step of
thetecognidmpmcux.Sineethegulemionofamgyispufamedoﬁ-lhe.itismssibletopcrformre!aﬁvely
expensive optimization.

There are many different computational approaches that can be employed for object recognition. Suetens, et al (22]is
a recent survey of the range of approaches. A VAC can be constructed for any given approach. Consequently, there is

no standard form for the recognition strategy output by a VAC; all that can be said is that the strategy consists of exe-
cutable code.

The strategy generated on the basis of analysis of predicted appearances is repeatedly executed in an application.
Since the strategy is executed repeatedly, optimizations performed in the off-line phase are essentially amortized over
the many on-line executions.

page 8
3 A VAC Utilizing Analytic Feature Prediction

The VAC discussed in this section was designed to generate an object localization program for a bin-picking task, and
was initially presented in (14], &t which time the system was not fully automatic. Further research has led to complete
automation of program generation (15], as well as optimization of the resulting code [12]. This section will present
the complete system.The inputs to the VAC consist of an object model, specifying geometric and photometric charac-
teristics of the object, and a sensor model, specifying the sensor characteristics necessary for predicting object
appearances and feature variations. The output consists of a recognition strategy in the form of an interpretation tree.

A localization task is solved in two phases, as is characteristic of appearance-based systems. In the first, off-line
phase, the object and sensor models are used to predict object appearances and the variation in detectable features.
The result of the first phase is a recognition program for the given task. The second, on-line phase consists of apply-
ing the generated program to the actual task.

A 3d object can yield an infinite number of 2D appearances for a given sensor, resulting from changes in viewpoint.
But, for any given sensor, there are a finite number of qualitatively different characteristic appearances that can be
termed aspects. An input image can be classified into an instance of an aspect based on the ranges of the feature val-
ues that differentiate between aspects; this procedure is called aspect classification. Since aspects are esseatially col-
lections of viewpoints, aspect classification is equivalent to rough localization. More accurate localization can be
performed by analyzing the shape change within an aspect, called linear shape change determination. The localization
program generated by the system reflects the distinction between global and local shape changes by separating the
processing into stages of aspect classification and linear shape change determination.

3.1 Explicit Object and Sensor Models

Computer vision systems can use many different types of sensors. A sensor can be considered to be a transducer that
transforms object features into image features, and different sensors yield different image features. For example, a
laser range finder detects the range and orientation of object surfaces, while edge-based binocular stereo yields the
range computed by triangulation on detected edges. Table 1 summarizes various sensors in terms of detectable object
features. A sensor model must specify the featres detectable by the sensor.

The list of features describes the qualitative characteristics of a sensor. The quantitative characteristics are given by
the detectability and reliability of each feature. Detectability specifies the conditions under which a given feature can

be detected. Reliability specifies the expected error in the feature value. Both characteristics depend on the configura-
tion of the object feature and the sensor.

The detectability of a feature by a given sensor depends on factors such as range, relative attitude, reflectivity and so
on. In many applications, such as industrial workstations, many of the factors can be fixed, and relative attitude
becomes the dominant factor. To consider relative attitde, fix the sensor coordinate system, and consider the rela-
tionship of a feature coordinate system with respect to it. The feature coordinate system is defined such that the z-axis
is aligned with the surface normal; x and y axes are assumed to be defined arbitrarily. There are three degrees of free-
dom in orientation of feature coordinates with respect to sensor coordinates.

Consider a solid unit sphere, called the orientation sphere, or o-sphere, in which each relative orientation of the fea-
ture coordinate system corresponds to a point. The direction from the center of the sphere to the point defines the ori-
entation of the feature z-axis. The rotation of feature coondinates around the z-axis corresponds to distance from the
spherical surface to the center of the sphere; a point on the surface represents a feature coordinate system obtained by
rotation around an axis perpendicular to the plane formed by the north pole, the center of the sphere, and the surface
point itself. The north pole is taken (o be the case in which feature coordinates and sensor coordinates are aligned.
One o-sphere can be defined for each object feature, and is referred 10 as the feature configuration space. Figure 1
illustrates the concept.

page 9

Table 1: Summary of Sensors

Sensor Veriex Edge Face Active/

Passive

Shape-from-shading - - region passive
Synthetic aperture radar point point/line point active
Time-of-flight range finder - - region active
Light-stripe range finder - - region active
Binocular stereo - line - passive
Trinocular stereo - line - passive
Photometric stereo - - region active
Polarimetric light detector - - point active

]

®)

Figure 1: Feature configuration space.
(a) Relationship between sensor coordinates and feature coordinates. (b) Feature coordinates
points on the o-sphere. The bottom left drawing depicts the coordinates corresponding to
points on the surface of the o-sphere, while the bottom right drawing depicts the coordinates
aloug one axis of the o-sphere.

A sensor system consists of two components: an illuminant, and a detector. For a feature to be detected, it must be
visible to both components. For a given feature, a separate configuration space can be defined for each sensor compo-
nent. Within each configuration space, the configurations for which the feamre is detectable can be easily defined by
geometric constraints. For example, a plane is detectable by a conventional tv camera if the surface normal of the
plane forms an obtuse angle with the camera line of sight. The detectability of a feature with respect to a given sensor
is then the intersection of the detectable regions of the configuration spaces of each of the sensor components. An

page 10

example of the detectability computation for a light-stripe range finder is shown in Figure 2.
2
 §

Figure 2: Detectability of a face for a light-stripe range finder. The detectable region is the
intersection of the detectability of the illuminaunt and the detectability of the sensor.

For a given viewpoint, the appearance of an object with respect to a particular sensor can be defined by a list of the
detectable object features, along with the values of parameters extracted from those features. A viewpoint corre-
sponds 1o a single point in the configuration space of each feature of the object. A feature is detectable if and only if
the point representing the sensor viewpoint lies in the detectable region of the feature configuration space, and if no
other part of the object occludes the feature. These conditions can easily be checked using a geometric modeler. Fig-
ure 3 illustrates the process for a simple polyhedral object and a light-stripe range finder.

Figure 3: Use of detectability constraints.
(a) Polyhedral object and light-stripe range finder. (b) Detectability constraints of a face.
(c) Application of detectability constraints. (d) Detectable faces.

—

page 11
3.2 Predict and Analyze Appearances

The techmques presente above make it possible to analytically determine the detectability of any feature from any
viewpoint. The combination of features, along with predicted feature values, defines the appearance of the object.
Next, the capability to predict appearances must be used to determine the aspects of the object.

For many feature sets, analytic approaches to determining the aspects of an object have been derived ([6], [18],[19]).
However, each approach is specialized for a specific feature set and a limited collection of surface types. An alterna-
tive approach, known as the exhaustive approach, is to examine a representative set of viewpoints around the object;
this approach is independent of the feature set and surface type. As the sample set grows and the spacing between
samples decreases, the results from the exhaustive approach will agree arbitrarily closely with the analytic results.

The exhaustive approach is relatively easy to implement, especially for cases in which the distance between sensor
and object is assumed fixed. Then, all possible viewpoints can be represented as points on the surface of a sphere cen-
tered on the object. A tessellation of the sphere using a geodesic dome which divides the sphere into tnany small
spherical triangles yields a nearly uniform sampling of viewpoints. The triangles can be subdivided repeatedly w0
yield any desired level of sampling resolution. At the center of each spherical triangie, the detectability of each fea-
ture can be computed as outlined above,

Aspects can be selected in many different ways, depending upon the features being considered. For example, aspects
can be defined as collections of viewpoints for which the same set of features are visible. Alternatively, as used here,
aspects can be defined on the basis of detectable faces. Consider an object with N faces (planar or curved) S,,
S,....Sn and define the face-label X = (X, Xj,....Xy), where X; = 1 or O according to whether or not face S; is detect-
able. Viewpoints with identical face labels are grouped together into aspects. For each aspect, a representative attitude
is selected and used to calculate representative feature values. Each aspect can be characterized by the feature values
of the representative attitude. Further, the ranges of feature values can be obtained by examining the range of values
of the features of each of the viewpoints constituting an aspect. Figure 4 illustrates the process of view generation and
aspect selection.

3.3 Generation of Recognition Strategy

The generation of a recognition strategy depends to some extent upon the sensor used, or at least upon the features
used. In this section, results are presented for sensors which produce dense range maps.

3.3.1 Aspect Classification

Aspect classification is the process of classifying an input image into an instance of an aspect. Since an aspect repre-
sents a contiguous set of viewpoints, aspect classification is equivalent to rough localization. The parameters of object
pose determined through aspect classification also provide good starting parameters for the stage of linear shape
change determination that follows.

One way of performing aspect classification is to extract feature values from the input image and compare this set of
values to the stored value ranges that characterize aspects. This approach may be very inefficient, however, since only
a few of the features may be needed to perform classification, yet all are computed. A more cost-effective approach is

to determine the computational cost of each feature, and then determine a discriminating set of features that mini-
mizes the expected cost of classification.

A classification tree, ot decision tree, is a tree in which each node represents a collection of classes and an associated
test, and arcs represent the possible resuits of a test. Leaf nodes represents the final results of classification. Using a
classification tree, a classification is performed by traversing the tree from the root to a leaf. A classification tree pro-
vides a convenient framework for optimizing the aspect classification process, since using a classification tree permits
tests (and corresponding computations of feature values) to be performed sequentially.

page 12

(o)

© oy .

y

£ ‘;
Ol
B e
£33 | O0F00: + %]
I) e e
= |- L) [=)
© = o =30
= [] s
=5 [w] a

o Ml ==

Figure 4: Extraction of aspects.

(a) Geometric model of an object. o)mcmmbwmmmuto
represent viewpoints ssmpled. (c) Sixty computed appearances. Faces surrounded with bold
lines are detectable by photometric stereo. (d) Eight component faces to be used for shape
labeling. (¢) The five aspects obtained through ciassification by shape Iabel. (f) Representative
attitudes, ome for each aspect.

Aspectclmiﬁcmmmuwwwﬁmmmmmmmmingmy.mmeoﬁ-mme
oang,MmmmammmmkmmM.mmmmm
chssiﬁcadonuwisidenﬁﬁedmduwtmkmmfemewﬁmndwnhuuach node.

A path from memofacmmmwawwammmcmﬁngm
costofamuemmtmmmwwmaMequMmmhmmnﬁmm
a computational cost. Each node in the classification tree is assigned the cost of computing the feature needed for the
carresponding test. The cost of a path is the sum of the costs of the intermediase nodes.

Aclassiﬁeaﬁonmmﬁmmymﬂnﬁmhmmhhdm&.mdﬁﬁa&ﬂmy&ukwwﬁhdﬁw
emﬁeqmcie&ﬂmfme.nwmofachsiﬁwhnmhdeﬁmdnhﬁemdmdadsﬁﬁaﬁm that is,
theavmgemmnommmibkhws.mwmmumdwwghﬁmmemnmm
bydwpopoﬁonddnmhpopuhﬁmmatwmmmmemdamudmwdeinmmis
mmmedmddividedbythepopnhﬁmsizehyieldtheomﬂmﬁmsmmﬂwmhodfu’mpuﬁngme
cost of an individual classification and the overall cost of a classification tree.

Fm&ngamhimmwachsimmmbefamdhedsauwpwhnmmm&mwua
srmtegytree.Ammt«mdﬁﬁuﬁmhamhwﬁebaﬂﬂﬁomﬁemwahfwa
complete strategy for classification; that is, each path in a strategy tree can be expanded into a classification tree.
Mm,ﬁm;mmmmmmhqdvdmwﬁmxmmwuﬂhMmmmaWhm
strategy tree.

In a strategy m,whno&mﬁmﬂmhdmlyﬂamﬁgaﬁm&m&wﬁbmwmm
Each arc is labeled with meprodmtofmccoaofmefmmdmeexpecedmbeofmpmwwhichmew

page 13

Qa.cH)

10°8=88

pop(Clial an(l)=s pop(Cl)el
T(S)ay mm@iale =1 -t} 1
@) pop(Ca)al -0} ®) pop(Cé)a3 an(B)e20

Exsponted Cont s (50 + 80+ 100) /10 I3

Figure 5: Cost computations.
(a) Cost of classification (b) Expected cost of a classification tree

will be applied. An arc is present when a feature can be used to break up a set into smaller sets. At the leaf nodes, all
the constituent sets should be singletons, unless the feature set is incapable of distinguishing some of the input
classes.

illustrates a strategy tree for a simple case consisting of 4 classes, and 3 features. At the root, all the classes are
grouped into a single set. An arc is present for every computable feature which can reduce the set size, so there are
three arcs at the root. The darkened path in the tree is the minimum cost path, and expands into the classification tree
shown in Figure 5.

There are cases for which is not possible, given the set of features, to distinguish two classes. Indistingnishable
classes are referred (0 as congruent classes, and the corresponding nodes as congruent nodes. Since the classes in an
aspect classification tree represent aspects of some object, the existence of congruent classes means that the corre-
sponding aspects cannot be distingnished with the available features; such aspects are referred to as congruen
aspects. Congruent aspects do not represent a failure of the search procedure, but rather indicate a fundamental limi-
tation of the feature set. In many cases, the linear shape change determination step corrects for ambiguous aspect clas-
sification and determines the correct object pose.

3.3.2 Linear Shape Change Determination
The aspect classification step results in the classification of an input image as an instance of an aspect. Since an aspect

consists of a contiguous collection of views of an object, aspect classification is equivalent to rough localization; the
possible collection of object poses are limited 10 those consistent with the observed aspect.

page 14

] a a n s o | a » a o a
B B B B
} } H
-) E] " - »»
i a) e(al (aacn
B O A (C.a) (e
BIHAC RO e &)
RS et
W (CI)ald —tGra
9 (Co)al -=(0)=»

Figure 6: Strategy tree

The next step in the localization process determines the exact pose, given the initial estimate obtained from aspect
classification. The same set of features is visible throughout an aspect, so no non-lincar events such as the appearance
or disappearance of a feature occur. Therefore, the second step consists of determining the exact pose within an
aspect, subject only to linear changes (rotation and transiation) of features; this step in the localization process is
known as linear shape change determination (1L.SCD).

One way to perform LSCD is to uiilize a model-based approach in which image features are matched to model fea-
tures, a pose is hypothesized and used 10 predict locations of features in the image, and the pose is refined by comput-
ing the error in predictions and observations and updating the pose appropriately. In most model-based systems, the
marching stage is very difficult, since all possible matches between image and model features must be investigated.
Since aspect classification has been performed, however, the carrespondence between some set of image and model
features has already been established. In particular, the assumptions underlying the LSCD method presented here are:

. lheconespondembetwemmdelandxmagefwanhnwn.
* the correspondences between model and image edges are unknown.
The aspect classification strategy presented in the previous subsection was encoded in the form of a tree, the classifi-
cation tree. Each leaf node of the tree represents an aspect or collection of congruent aspects, and for cach leaf node a
different LSCD strategy may be appropriate. The VAC presented here computes a separate LSCD strategy for each
leaf node of the aspect classification tree. The steps in each LSCD strategy are encoded as nodes that are attached to
MIdmofmemmmmmmem
aspects, the same steps are followed in the same order for each aspect:
1. determine the coordinate system of the primal face (the visible face with the largest 3D area):

1.1. determine the origin of the primal face;

1.2, determine the z-axis orientation of the primal face;

page 15
1.3. determine the x-axis arientation of the primal face;
2. estumate the body coordinate system;
3. esuablish correspondences between image and model edges;
4. recover exact body coordinates by numerical minimization.
The LSCD strategy is determined off-line through the following steps:
1. For each aspect, the visible face with the largest 3D area is selected as the primal face;

2. Each primal face is analyzed, and a method for defining the face coordinate system is determined. Sepa-
rate nodes are attached to the classification tree which define the exact procedures used in each individual
step of determining the origin, z-axis, and x-axis of the primal face.

3. Given the estimated coordinate system of the primal face and the transformation between primal face
coordinates and model coordinates, the body coordinate system can be estimated with respect to the sen-
sor coordinates. This is encoded as a separate node of the tree.

4. Knowing the object aspect and a rough estimate of the body coordinate system enables the prediction of
the location of model edges in the image. The predicted edges can then be matched to observed edges.
This process is encoded as a separate node of the tree.

5. A fine-tuning procedure is used to determine the exact body coordinates by adjusting the estimated body
coordinates so that image edges exactly match predicted model edges. An exact match is not possible, so
the procedure finds the body coordinates that minimizes the error between predicted and observed edge
locations. This procedure is encoded as a separate node of the tree.

3.3.3 The Interpretation Tree

The overall strategy for object localization is encoded in the form of a tree, the interpretation tree. The top part of the
interpretation tree consists of the aspect classification tree, and consists of directions for a series of feature value com-
putations and tests that result in the classification of an input image into an instance of an aspect. The bottom part of
the interpretation tree is six nodes deep, and consists of the steps in the LSCD strategy that are appropriate for each
aspect. Figure 7 and Figure 8 illustrate the interpretation trees for two objects: a toy car, and an L-shaped polyhedron,
respectively.

3.4 Run-time Execution

Each of the procedures represented by a node of an interpretation tree corresponds to an executable object stored in a
program library. During the off-line phase, the creation of a node of the inserpretation tree is accompanied by the
instantiation of an executable object from the program library, and the insertion of the object at the node. During the
on-line phase, these instantisted objects are executed in order to perform object recognition. Message-passing is used
for communication between objects.

For each execution of the object recognition strategy during the on-line phase, a preprocessed image is passed to the
root of the interpretation tree and the object stored at the root is invoked. The execution of the root object results in
the computation of some feature value and the application of a test. The outcome of the test results in the prepro-
cessed image being passed to the appropriste node at the next level of the tree, and the corresponding stored object is
invoked. The sequence of message-passing and object invocation proceeds until a leaf node is reached, indicating that
processing is complete. The results of processing are then passed back up the tree and returned from the root.

page 16

REERAEIE

A0\ 2|0SIE)

(c) Aspect classification tree (d) Complete interpretation tree
At congruent nodes of the classitication part of the tree, no unique aspect is identified. Instead, several aspects are

determined 1o be possible. For each congruent aspect, the LSCD part of the tree is executed, and the resuits retumed

Figure 7: Generation of an object recogunition strategy for a toy car.
(8) Object model. (b) Object aspects

are compared by the congruent node; the aspect yielding the minimum error is selected as the correct interpretation

and this result is passed back up to the root of the tree.

page 17

(a)

T

=
Fle® 8| ow|aS|S

Figure 8: Generation of an object recognition

strategy for an L-shaped polyhedron.

(b) Object aspects.

(d) Complete interpretation tree.

(a) Object model.
(c) Aspect classification tree.

3.5 Experiments

compiled strategy. As stated previously, the VAC presented here was
features used are those that can be deter-
independence of the VAC, the resuits are demonstrated

dense range images; that is, the

mined given an input range image. In order 10 show the sensor

In this section, we illustrate the execution of the
constructed (o utilize sensors that produce

page 18
using two different range sensors: dual photometric stereo [13), and an Erim laser range finder [11].
3.5.1 Dual Photometric Stereo: Toy Car

The complete interpretation tree for the toy car is presented in Figure 7. The toy car was placed in a scenc on top of a
pile of other objects. The input car scene is shown in Figure 9. Preprocessing stages results in the computation of:

* A needle map containing the gradient space values at each pixel.
* Anedge map.

+ A label map indicating the region to which each pixel belongs.

Figure 9: Input scene for dual photometric stereo experiment

The aspect classification steps performed are illustrated by the black nodes shown in the interpretation tree of Figure
10, Staning below the node at which the aspect is ideatified, the LSCD procesiing begins. The first node determines
the mass center of the target region and declares that position o0 be the origin of the face coordinste system. The next
node determines the average surface orientation of the target region and deciares that 10 be the orientation of the z-
axis of the primal face coordinate sysiem.

The next two nodes complete the determination of the face coordinate sysiem and estimate the body coordinate sys-
tem. Figure 11 illustrates the estimated body coordinates overiaid on the input image.

The next step in the process is the desermination of the edge pairs and fino-tuning of the object pose. Figure 12 illus-
trates the results of these processes.

3.5.2 Erim Laser Range Finder: L-Shaped Polyhedron

mmmmwmfaubmmhmhmm&mwmmm
placed in a scene and an Erim image obtained and preseated to the root of the inserpretation tree. The results are pre-

Figure 10: Execution of aspect classification tree. Black nodes indicate path followed.
Figure 11: Estimated body coordinates overiaid om input sceme.

page 19

sented in Figure 13. The results are interesting in that a congruent node was encountered. The node contained two
aspects, and the figure shows the two possible interpretations overiaid on the input image. Based on a comparison of

the resulting errors, the correct aspect and pose were determined.

page 20

(®)

Figure 12: Final determination of object pose.
(a) Correspondences between model and image edges. (b) Final pose overiaid on input scene.

4 A VAC Utilizing Image Synthesis for Prediction

The appearance-based sysiem of Sato, et al {20] was bailt for the purpose of recognizing specular objects. Specular
objects pose a special problem for computer vision. Specularities are often the most prominent image feamres, and
yet contain no brightmess variations which can be used for edge detection or 3D shape analysis. Moreover, specular
features may appear, disappear, or change shape abruptly with small variations in viewpoint. The presence of a spec-
ularity requires a precise configuration of illuminant, surface normal, and sensor, and therefore provide a powerful
constraint on the underlying surface geometry. However, the constraint is purely local, and does little t0 constrain the
object pose.

Specular reflections are found in nearly every imaging scenario. Metal, glass, plastic, and many other materials are
highly specular. In addition to optical images, there are other imaging systems that are based on specular reflection.
For example, radar is based on specular reflection, as are ultrasonic underwater imaging and medical sonography.
Therefore, it is important to establish techniques to recognize objects using specular images.

4.1 Explicit Object and Sensor Models

An analytic approach t0 appearance-based vision is impractical in the domain of specular objects. Becanse of inter-
reflections between shiny surfaces, analytic prediction of specularities is extremely difficult. An alternative is the use
of a sensor simulator, which generates object appearances based on both object and sensor models.

Sensor simulators are very similar 0 ray tracers of computer graphics. A 3D scene is described by a geometric mod-
eler. A sensor simulator traces the path of light rays from pixels into the scene. Every time a ray hits an object surface,
the ratios of reflected and transmitted energy are computed on the basis of the surface refiectance function and coefS-
cient of refraction, respectively. The sensor simulator then traces both the refiected and refracted rays. When a ray
reaches a light source, the energy emitted by the source is specified by the sensor model. The incident energies of all
the rays towards a pixel are summed to desermine the brightness value at the pixel and therefore predict the object
appearance at the pixel.

| ©
Figure 13: Erim Laser Range Finder Experiment.
(a) Input scene. (b) Results of aspect classification. (¢) Two possible poses.

(d) Edge correspondences. (¢) Resultant pose.
One critical difference between a sensor simulator and a ray tracer is that sensor simulators maintain the symbolic

carrespondences between regions of the image and the object surfaces underlying the regions. In the case of specular
objects, this correspondence permits the analysis of which object surfaces produce strong, stable specularities, and

from which directions specularities are visible on each surface.

Specular features are characterized by strong, distinct, and saturased brightness. In many cases, specularities can be

page 22

extracted by the simple procedure of binary thresholding. Some specularities are easier to detect than others, how-
cver. In general, the size of a feature determines the ease with which it can be detected. For example, elongated spec-
ularities on a cylindrical surface are easy to detect, while a specular spot on a small sphere is difficult to detect. Thus,
the detectability of a specular feature is related to the 3D shape of the surface underiying the feature.

While a specular feature might be casily detected, it could be quite unstable; that is, the specularity might be visible
only over a small range of viewpoints, and a slight change in viewpoint could cause it to disappear. Such specularities
are termed unstable, and are poor choices for use in recognition. The stability of a specular feature is related to the
size of the collection of viewpoints from which the feature can be detected.

To make the concept of stability more clear, consider a co-located camera and light source. Specular reflections are
detectable when the object surfaces are nearly perpendicular to the camera line-of-sight. Consider the motion of the
camera/light system around the surface of a sphere centered on an object, with the line of sight always toward the
center of the sphere. If a small specular sphere is being imaged, a specular spot will be observed, and will continue to
be observed for all viewpoints; hence the specularity arising from a spherical surface is extremely stable. Now con-
sider a cube being imaged. Each planar surface only yields a specularity when the line of sight is perpendicular to the
surface, and the specularity disappears for small changes in viewpoint; hence, specularities from planar surfaces are

unstable. The area on the viewing sphere comresponding to detectable viewpoints is a measure of stability of a specu-
lar feature.

Figure 14 illustrates the detectability and stability for speculsr features over four differeat surface types: planar, cylin-
drical, conical, and elliptical. As can be seen in the figure, planar surfaces have easily detectable specularities that are

low in stability, while spherical surfaces have low detectability but high stability. Cylindrical and conical surfaces fall
somewhere in between.

M

@ L
1"“@1
b=
L:—.!

Figure 14: Detectability and stability of specular features

4.2 Predict and Analyze Appearances

The system employs an exhaustive method for appearance analysis. Using a sensor simulator, the system generates
synthetic images for a representative collection of viewpoints obtained by tessellating the unit sphere. The viewpoints
are then grouped into aspects on the basis of similar feature sets.

Assuming that range to the object is constant, ail possible viewing directions can be represented as points on the unit
sphere. A geodesic partition of the viewing sphere uniformly tessellates the sphere into small triangies. The center of

each triangle is chosen to represent a viewing direction. Trisngle can be further subdivided into smaller triangles to
make the sampling as fine as desired. The sensor simulator is then used to generate synthetic images at each represen-

page 23

tative viewpoint. Figure 1S shows some of the appearances generated for a simple object.

(2)

Figure 15: Specular images of a simple object.
(a) Object. (b) Synthesized sample images.

Each image is processed to extract specularities, and the data structure created by the seasor simulator is used to
determine the primitive component underlying each specularity. For N primitive components Py, P,,..., Py, a cell
label can be defined as an N-tuple (X, X;,..., X)) such that X; = 1 or 0 according to whether or not component P;
gives rise to a detectable specularity at the viewpoint represented by the cell. Cells with identical cell labels are
grouped together 1o form aspects. Thus, in the case of specular objects, aspects are defined with respect to detectable
specularities. Geometrically, the process can be considered as follows. For each primitive component, a geodesic
dome is constructed in which each cell is labeled according 10 whether the component gives rise to a specularity from
that viewpoint. The geodesic domes for each component are then intersected, and each distinct region corresponds to
an aspect. Figure 16 illustrates the selection of aspects.

Figure 16: Aspect selection for the simple object.

4.3 Generate Recognition Strategy

As discussed above, specular festures can vary in their characteristics of detectability and stability. For the purposes
of object recognition, the sysiem s0rts specular features on the basis of desectability and stability in order 1o select the
most effective features for aspect classification.

page 24

Detectability was defined above as the measure of the ease with which a specularity can be detected, and was related
to the area of the specularity. The system uses as a measure of detectability the number of pixels of the largest appear-
ance of a specularity, normalized by dividing by the area of the larges: detected specularity.

Stabilitywasde.ﬁnedulhemonheviewingsphaeovuwhi:hagivenspecuhrhykdemdlnmecaseofam-
sellated viewing sphere, this measure can be approximated by counting the number of cells within which the specu-
larity is detected, normalized by the total number of cells.

An evaluation function is required to combine the measures of detectability and stability into a measure of overall
feawre utility. For each aspect, the features are ordered by decreasing utility. At run-time, matches are made in order
of decreasing utility.

Aspect classification is equivalent to rough localization. Finer localization is difficult in the case of specular images
because specular features change their shape drastically with small changes in viewpoint. Moreover, the exhaustive
approach used in aspect determination may miss an unstable specularity that is only visible between two cells. Conse-
quently, deformable template matching was selected as the procedure for fine localization.

Deformable template matching permits the template to deform according to certain constraints. An appearance is
described as a combination of templates, each of which describes a specularity. The templates are interconnected con-
ceptually by springs. The quality of match is measured by the sum of the internal deformation energy of the springs,
and the external energy needed to fit each template to a real specularity. Thus, a deformable template can deform to
find a match, even when a specularity changes shape or position. Moreover, matches can still be made even in the
presence of accidental appearances or missing features.

A deformable template is prepared for each aspect using the appearance which is located at the center of the aspect.
Specularities appear as spots or line segments, 30 each template consists of spots and line segments. Specular features
are extracted from the central appearance. For an elongated feature, a line is fit to the feature and used to represent it
in the template. For a spot feature, a point located at the center of the feature, is used to represent the feature in the
template. A conceptual spring is located at each endpoint of a line feature, and at the point representing a spot feature.
The spring energy is calculated from the displacement between the original and current location of the spring. Thus,
the energy of a spot feature is a function of the displacement between the current and original position. For a line fea-
. ture, the energy is a function of the displacement energy of the two endpoints.

4.4 Run-time Execution

Run-umeexecuuonmh&wmm&mmmdﬁmaﬂwﬁmhmm&em
discussed in section 3, aspeachmﬁcumdo«nmnmqnelydmfymmpmmgeammmecofanaspect

Rather, aspect classification is used to eliminate impossible aspects. Remaining aspects are input into the next stage,
in which deformable template matching is used for verification.

4.4.1 Aspect Classification

Specular features can be very unstable. Smail changes in viewpoint may canse a given specularity to appear, dissp-
pear, or change shape. Consequently, it is difficult to identify a single specularity, or the set of specularities that define
an aspect, with complete confidence. Therefore, rather than empioy a binary classification of an input image as an
instance of an aspect, the run-time aspect classification system employs a continuous classification method based on
the Dempster-Shafer methodology [21). Figure 17 illustrases the classification method. For simplicity, the illustration
is limited 10 aspects lying on a single great circle of the viewing sphere. Each match with a template from a single fea-
ture generates a likelihood distribution, in which a value close 10 1 means that the corresponding aspect is very likely.
Likelihood distributions from separate features are mesged using Dempster-Shafer theory. As shown in the figure,
each additional feature reduces the number of likely aspects and sharpens the peaks of the remaining ones. The likeli-
hood values for impossible aspects decrease with each additional festre, while the likelihood values of possible

page 25

aspects increase. Afier every the evidence from every available feature has been applied, the overall likelihood distri-
bution may still contain several peaks, each of which represents a possible aspect classification for the input image.

Part template possible aspects
Figure 17: Aspect classification based on evidential reasoning

4.4.2 Verification

The verification process determines the correct aspect by matching the input image to the complete template for each
of the possible aspects. Each template can move over the entire image to r*ni.aize the total energy. The total energy
is comprised of a weighted sum of constraint energy, and potential energ y:

Eial = W connnints E constrainns "'wpunﬁnlﬁpmml

Potential energy represents the energy of the position of the template, while constraint energy represents the energy of
the relations between template components. Potential energy is readily visualized as the height of the template in a
potential field defined by the detected specularities in the image. Constraint energy is modeled by springs connecting
the template points to image feature points; as the template deforms, the springs stretch and the constraint energy
increases. Figure 18 illustrates template matching.

An optimization procedure is used to find the energy minimum. To avoid getting trapped in local minima, some noise
is added to the total energy. The global minimum energy for each template specifies the quality of fit of the input

image to the template. The best match is chosen by comparing the minimum energies for each of the candidate
aspects.

4.5 Experiments

In this section, the VAC for specular object recognition is applied to two different kinds of specular images: real opti-
cal specular images, and synthesized synthetic aperture radar (SAR) images.
4.5.1 Real Optical Images

For this experiment, a real toy airplane was constructed. The seasor used was a tv camera with a co-located light
source. The sensor parameters were obtained by calibration. Figure 19 shows a real specular image of the toy air-
plane.

The object was modeled using the Vantage geometric modeler [2]. Object aspects were determined using the exhaus-

page 26

tive method. Since man-made objects such as the airplane have only a few stable poses, an aspect map over the entire
viewing sphere was not generated. Instead, only the appearances of the airplane from the equator of the viewing
sphere were considered. Sample images were generated on the equator at 5° increments for a total of 72 samples.
Appearances were generated using a sensor simulator [8]. Figure 20 illustrates the object model and some sample
appearances.

The concentric arcs in Figure 21 correspond to the visibility maps for each primitive surface. The outermost arc cor-
responds o the detectable directions of the rear fuselage. The arc is unbroken - the part can be observed from all
viewing directions. The top-left image in shows the set of possible appearances of specular features arising from the
rear fuselage as a function of viewing direction. The other images correspond to other arcs of the visibility map. Some
of the arcs in the map are broken; the missing arc regions correspond to viewpoints from which the primitive surface

©

Figure 18: Deformable tempiate matching.
(a) Template. (b) Potential energy. (c) Constraint energy.

Figure 19: Real specular image of toy airplane.

is not visible. The figure shows the features in their computed order of significance.

page 27

(a)

Figure 20: Model airpiane and predicted specular appearances.
(a) Airplane model. (b) Sample appearances.

Rurluulqo Fmﬁnuhw ldlm
"

4th: ‘ Sth: th:

Right wing Teit in Right tail plane

@) ®)

Figure 21: Visibility and significance of features in optical experiment.
(a) Visibility map. (b) Specular features in order of significance.

To test the resulting recognition program, a real specular image of the toy airplane was obtained and input to the sys-
tem. The first step in the recognition process is aspect clagsification, in which possible aspects are searched by match-
ing with partial templates. Figure 22 shows the input image and the results of matching to the first three partial
templates. The figure clearly shows the narrowing of the likelihood distribution as additional matching is performed.
The result of the aspect classification step was the selection of aspects at 45°, 115°, 125°, 165°, and 170°.

Following aspect classification, verification was performed using deformable templase matching. Figure 23 illustrates
the verification step. One template was used for each of the aspects selected. In each case the template changed its
shape 10 match the specularities in the input image and converged 10 the shapes shown by the white lines superim-
posed on the copies of the real image in the figure. The minimum energy, and hence the best match, was obtained for
the aspect at 170°.

| T ‘IIII”I”"'"'
LA

(=) a_.) ©

Figure 22: Aspect classification stage for optical experiment.
(a) Input optical image (b) Accumulation of evidence (c) Airplane parts.

- f"",.,"y

Template
matching

Figure 23: Verification stage for optical image.
4.5.2 Synthetic Aperture Radar lmage

Synthetic aperture radar (SAR) is a flyable radar sysiem that is often used on sircraft or satellites. SAR can produce
very high-resolution two-dimensional images, and can detect details of targets, especially artificial structures. SAR
images are based on specular reflections of radar waves, so image features in SAR are similar to specular festures in
optical image. In specific, the features are very sensitive (o change in object orientation, change shape abruptly, and
appear or disappear suddenly.

This experiment was performed using synthetic data only. A SAR simulator (SARSIM), developed by TASC [3), was
used to generate synthetic SAR images. The simulator created not only brightness images, but also attribute images
which specified the part of the object which caused each radar feature.

page 29

An airplane mode! was used for the object model that was similar 0 the sirplane used in the optical experiment, but
somewhat more complex. The output from a SAR sensor is a 1op-down view. By assuming that an airplane is parked
on the ground, it was only necessary to consider the possible appearances of the airplane corresponding to various
rotations about an axis perpendicular to the ground. Occlusions were not considered. Viewing directions were sam-
pled cvery 10°. Figure 24 shows the airplane model and the sample appearances.

Figure 24: Airplane model and predicted SAR images.
(a) Airplane model. (b) SAR images predicted by SARSIM.

Aspects were determined using festure visibility, Figure 25 illustrates the visibility map for the sirplane. Concentric
arcs correspond to the detectable directions of each part; missing arc pieces indicate directions from which the part is
not visible. The detectability and stability of each feamre was evalusted from the simulated images, and the features
were sorted in order of significance. The right side of the figure shows the appearances of each feature; the features
are numbered in order of significance.

4t Sih: Oh:
From right wing Rear right wing . Front fuselage
(® ®)

wmmwmwdmhmw
(a) Visibility map. (b) SAR features ia order of significance.

page 30 -

Maxching templates were generated based on the predicted features. Each wemplate consisted of a collection of bright
lines and bright spots. Since range values can be determined from SAR images, it was possible 10 normalize the size
of aircraft. Hence, variation in object size was not considered.

A test image of the airplane was generased using SARSIM. The first stage of the run-time process was aspect classifi-
cation, which reduced the aumber of possible aspects by masching with partial semplates. Figure 26 illustrates the
aspect classification process. The first maxch resulted in a broad likelihood distribution. Afier matching using all six
effective features, a narrower distribution was obtained, which reduced the number of possible directions 1o five.

AR A L
il

®) ()

Figure 26: Aspect classification stage for SAR experiment.
(a) Input SAR image. (b) Accumulated likelihood distributions. (¢) Aircraft parts.

The second stage of the run-time process was verification, in which deformable templates were matched to each of
the candidate aspects. Figure 27 illustrates the verification process. The upper five images in the figure are copies of
the input image. The superimposed white figures show the deformed templates at the minimum energy levels. The
least energy of the five templates was obtained for the template at 30°. The result is shown in the lower image of the
figure, with the outline of the aircraft superimposed over the original image.

......m.m.m.\um"

dm.,)

Result
Figure 27: Verification stage for SAR experiment.

page 31

S Summary

In this paper, we presented the paradigm of appearance-based vision, which is a paradigm for building object recogni-
tion systems. The paradigm is called appearance-based, since an integral step is the prediction and analysis of object
sppearances. An appearance-based system is called a vision algorithm compiler, or VAC. The input to & VAC is a set
of object and sensor models, and the output is an executable object recognition program.

* two-stage process
A VAC operates in two distinct stages. The first stage is performed off-line, and consists of the analysis of
appearances and the generation of an object recognition program. The second stage is performed on-line,
and consists of the execution of the previously generated program.

» explicit object and sensor models
A VAC embodies an overall approach to object recognition that can be applied to a variety of objects and
sensors. Therefore, explicit and exchangeable models are utilized. Seasor models specifies the features
detectable by the sensor, along with procedures to compute the detectability and reliability of each feature.
Object models include geometric and photometric properties of the objects.

* appearance prediction and analysis
Objects are recognized based on their appearances in images. Therefore, the prediction and analysis of
appearance is fundamental to generating competent object recognition programs. A VAC predicts appear-
ances based on the information in object and sensor models. The range of appearances may be determined

apﬂydaﬂyauhmsﬁvdy.ndhewmyhpe@dmlyﬁaﬂyamwmm&
sis. :

* stralegy gencration
Each VAC may embody a different approach to object recognition. For example, the first VAC presented
processed range data and performed final pose determination using minimization of edge location errors.
The second VAC processed specular images and performed pose desermination using deformable tem-
plates. However, the output of a VAC is an executable program for object recognition. Typically, the out-
put program is optimized during the off-line stage; the optimization costs are paid back by cost-efficient
execution of the on-line stage.

The history of computer vision research has consisted largely of research devoted to making vision systems work. As
a resuit, powerful new methods have been developed and the vision sysiems of todsy are much more powerful and
competent than those of the past. However, vision systems of todsy are no easier or cheaper t©0 build than systems in
the past. As a result, computer vision is not as widely applied as one might expect, due t0 the cost of systems.

Appearance-based vision provides one approach 10 making vision systems more cost-effective by providing a mesns
of automatically generating object recognition systems. Rather than requiring time and effort from highly trained
individuals, a VAC can generate a competent, cost-effective object recognition program given only object and sensor
models. The example VACs presented in this paper demonstrated both the effectiveness and the flexibility of appear-
ance-based vision.

Acknowledgements

The authors thank Robert W. Pinto and G. Stephen Zabele of The Analytic Science Carporation for offering the SAR
simulator and giving valusble comments on the properties of SAR images. The aunthors also thank Takeo Kanade and
the members of VASC (Vision and Autonomous Sysiem Center) of Carnegie Mellon University for their valuable
comments and discussions.

page 32

References

(1

{2)

3]

(4]

(5]

t6)

(7

(8]

9

(10

(11}

(12}

(13]

{14)

(15]

(16]

17

Armman, F. and Aggarwal, J. K. Automatic generation of recognition strategies using CAD models. Proc...
IEEE Workshop on Directions in Automated CAD-Based Vision, pp. 124-133 (1991).

Balakumar, P, Robert, J. C., Hoffman, R., Ikeuchi, K., and Kanade, T. Vantage: A Frame-Based Geomet-
ric/Sensor Modeling System - Programmer/User’s Manual v1.0, CMU-RI-TR-91-31, The Robotics Insti-
tute ¢, Carnegie Mellon University (1991).

Betwz, J. W, Prince, J. L., and Bello, M. G. Representation and transformation of uncertainty in evidence
theroy framework. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 646-652
(1989).

Bolles, R. C. and Horaud, P. 3DPO: A three-dimensional part orientation system. In T. Kanade, editor,
Three-Dimensional Machine Vision, pp. 399-450. Kluwer, Boston, MA (1987).

Camps, O, 1., Shapiro, L. G., and Haralick, R. M. PREMIO: an overview. Proc. IEEE Workshop on
Directions in Automated CAD-Based Vision, pp. 11-21 (1991).

Chen, S. and Freeman, H. On the characteristic views of quadric-surfaced solids. Proc. IEEE Workshep
on Directions in Automated CAD-Based Vision, pp. 34-43 (1991).

Flynn, P. J. and Jain, A. K. BONSAI: 3D object recognition using constrained search. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 13(10):1066-1075 (1991).

Fujiwara, Y., Nayar, S., and Ikeuchi, K. Appearance Simulator for Computer Vision Research. CMU-RI-
TR-91-16, The Robotics Institute, Camegie Mellon University (1991).

Goad, C. Special purpose automatic programming for 3D model-based vision. Proc. Image Understand-
ing Workshop, pp. 94-104 (1983).

Hansen, C. and Henderson, T. C. CAGD-based computer vision. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 11(11):1181-1193 (1989).

Hebert, M. and Kanade, T. Owtdoor scene analysis using range data. Proc. Int. Conference on Robotics
and Automation, pp. 1426-1432 (1986).

Hong, K. S., Ikeuchi, K., and Gremban, K. D. Minimum cost aspect classification: A module of a vision
algorithm compiler. Proc. 10th Int. Conf. on Pattern Recognition, pp. 65-69 (1990). A longer version is
available as CMU-CS-90-124, School of Computer Science, Camegie Mellon University (1990).

Ikeuchi, K. Determining a depth map using a dual photometric stereo. Int J. Robotics Research, 6(1):15-
31 (1987).

Ikeuchi, K. Generating an interpretation tree from a CAD model for 3D-object recognition in bin-picking
tasks. Int. J. Computer Vision, 1(2):145-165 (1987).

Ikeuchi, K. and Hong, K. S. Determining linear shape change: toward automatic generation of object rec-
ognition programs. CVGIP: Image Understanding, 53(2):154-170 (1991).

Ikeuchi, K. and Kanade, T. Automatic generation of object recognition programs. Proc. of the IEEE,
76(8):1016-1035 (1988).

Koenderink, J. J. and van Doom, A. J. The internal representation of solid shape with respect to vision.

page 33
Biological Cybernetics, 32: 211-216 (1979).

[18) Kriegman, D. J. and Ponce, J. Computing exact aspect graphs of curved objects: solids of revolution. Int.
Journal of Computer Vision, 5(2):119-135 (1990).

[19] Plantinga, H. and Dyer, C. R. Visibility, occlusion, and the aspect graph. Int. Journal of Computer
Vision, 5(2):137-160 (1990).

[20]) Sato, K., Ikeuchi, K., and Kanade, T. Mode!l based recognition of specular objects using sensor models.
CVGIP: Image Understanding, 55(2):155-169 (1992).

[21] Shafer, G. A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, NJ (1976).

[22] Suetens, P, Fua, P, and Hanson, A. J. Computational strategies for object recognition. ACM Computing
Surveys, 24(1):5-61 (1992).

